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We discuss the application of the discrete variable representation(DVR) to Schrödinger problems which
involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equa-
tion of singularities at the cost of added complexity, we show that an approach based solely on an orthogonal
polynomial basis is adequate, provided the Gauss-Lobatto or Gauss-Radau quadrature rule is used. This
ensures that the mesh contains the singular points and by simply discarding the DVR functions corresponding
to those points, all matrix elements become well behaved, the boundary conditions are satisfied, and the
calculation is rapidly convergent. The accuracy of the method is demonstrated by applying it to the hydrogen
atom. We emphasize that the method is equally capable of describing bound states and continuum solutions.
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I. INTRODUCTION

The discrete variable representation(DVR) [1–6] is one
of the most effective and widely used methods for discretiz-
ing the Schrödinger equation. In its most elemental form, it
has the virtues of maintaining the locality of operators which
are local in space, and the rapid convergence of a spectral
method. In addition, for multidimensional problems it leads
to a sparse matrix representation of the Hamiltonian, which
may be used quite effectively when coupled to iterative tech-
niques designed to solve large sets of linear equations or to
extract the lowest eigenvalues of large matrices. A recent
variant of the method, which combines the DVR with a finite
element method[7], has been used to solve one of the most
intractable problems in atomic scattering theory, the impact
ionization of the hydrogen atom. Lately, the technique has
been combined with the Arnoldi/Lanczos approach to pro-
duce an extremely efficient method for the solution of the
time-dependent Schrödinger equation[8].

The purpose of this note is to correct some misconcep-
tions concerning the application of the method to problems
involving singular potentials. These issues appear to arise
when it is apparent that the boundary conditions satisfied by
the solution to the Schrödinger equation should not lead to
any numerical difficulties. A number of authors[3,9–11]
have provided “remedies” to remove the singularities and to
transform the original Schrödinger equation into a more trac-
table and rapidly converging form. Unfortunately, these
transformations often destroy the natural symmetry of the
original equations and lead to more complex algebraic solu-
tion methods than is really necessary. Here we present an
alternative approach, which addresses the problem more

transparently, leading to a simpler numerical procedure with
no loss of accuracy. Section II is a summary of the key
elements of the DVR method, and in Sec. III we present our
approach for applying this methodology to singular Hamil-
tonians. We end in Sec. IV with a brief conclusion.

II. DISCRETE VARIABLE REPRESENTATION

Since the DVR has been discussed extensively[1–6] in
the literature, we provide only the essentials here. A DVR
exists when there is both a spectral basis ofN functions,
fisxd, orthogonal over a rangefa,bg with weight function
wsxd

E
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b

wsxdfn
*sxdfmsxddx= dm,n, s1d

and an associated quadrature rule withN points xi and
weightswi which enable a set of coordinate eigenfunctions
uisxd to be defined with the following properties:

uisxd = Îwsxdo
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Using the quadrature rule to evaluatecn gives
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kuiuxuujl = di,jxi . s3cd

There are two important features to note. First, the coordi-
nate eigenfunctions are defined as continuous functions of
the spectral basis. When this basis is polynomial the sum in
Eq. (3b) can be carried out exactly, and the coordinate eigen-
functions can be expressed as

uisxd =Îwsxd
wi

p
k=1

N

8
x − xk

xi − xk
, s4d

the Lagrange interpolating functions at the quadrature points.
With either representation, they may be easily differentiated
analytically. Second, the expansion coefficientscn are com-
puted using the quadrature rule. Implicit in using the quadra-
ture rule for the evaluation ofcn is that the result is accurate.
This is not guaranteed except for certain cases. For example,
whenfisxd is one of the classical orthogonal functions, there
is an associated Gauss quadrature[12] which guarantees that
Eq. (3) is exact when the integrand is a polynomial of degree
s2N−1d or less. There are other examples such as particle-
in-a-box or Fourier functions, which are not polynomials, but
which can be shown to exactly satisfy Eq.(3) with an appro-
priately chosen quadrature rule. In all of these cases there
exists a unitary transformation between the original spectral
and the coordinate basis. Since the coordinate functions di-
agonalize the coordinate operator, any function of the coor-
dinates is also diagonal. This is very convenient for actual
calculations and gives the DVR calculation many of the de-
sirable properties of a grid based method with few of the
disadvantages. It should also be noted that matrix elements
of the kinetic energy operator while not diagonal in the co-
ordinate basis may be evaluated simply and exactly using the
quadrature rule or analytically. Since the kinetic energy part
of the Hamiltonian matrix is a separable sum over particle
and coordinate variables, a product DVR basis leads to a
sparse representation. When the intervalfa,bg is infinite or
semi-infinite, the weight functionwsxd ensures that the wave
function will decay properly at large distances. For finite
intervals, boundary conditions may be enforced by requiring
that the wave function or its derivative behave correctly at
the left and/or right boundary.

There is a simple, but quite useful generalization of Gauss
quadratures that will be needed in what follows. It is possible
to specify in advance that some of the points are fixed. When
these points are either or both of the end points of a finite
interval, the quadrature rule is termed a Gauss-Radau or
Gauss-Lobatto quadrature, respectively. The remaining
Gauss points may be determined by a simple modification of
the original procedure[12]. Since one or two points are now
fixed, the quadrature is of lower accuracy than the full Gauss
quadrature, but the great advantage of being able to satisfy
specific boundary conditions at the end points far outweighs
this disadvantage.

III. SINGULAR HAMILTONIANS

Consider the radial Schrödinger equation

F−
1

2

d2

dr2 +
lsl + 1d

2r2 + vsrd − EGcsrd = 0 s5d

where we assume thatvsrd vanishes for larger and is singu-
lar at the origin. The radial function satisfies the boundary
conditioncs0d=0, and either exponentially decays or oscil-
lates for larger. Here we will offer two alternative ap-
proaches to solving Eq.(5). To motivate the discussion, re-
call that Baye and Heenen[3] suggest that for the case of
exponentially decaying boundary conditions, one very natu-
ral choice for the spectral functions is

fnsrd = r l+1exps− r/2dLn
2l+2srd s6d

whereLn
asrd are the generalized Laguerre polynomials. When

this basis is used for the Coulomb potential, the results are
quite disappointing. The relative error in the ground state
energy with ten basis functions is about 5Ã10−3. This ap-
pears to be simply related to the choice ofr2exps−rd as the
weight function. While this choice does result in a set of
coordinate functions that satisfy both boundary conditions, it
gives rise to a potential energy matrix element that does not
behave as a polynomial times the weight function. In fact,

TABLE I. s-wave eigenvalues of hydrogen atom in Legendre
basis;R=50 a.u.

n N=10 N=20 N=40 Exact

1 −0.39428839 −0.49997882 −0.50000000 −0.50000000

2 −0.11142228 −0.12500000 −0.12500000 −0.12500000

3 −0.05165408 −0.05555555 −0.05555555 −0.05555555

4 −0.02957707 −0.03120434 −0.03120434 −0.03120434

5 −0.01651543 −0.01786476 −0.01786476 −0.01786476

6 −0.00060937 −0.00226590 −0.00226590 −0.00226590

FIG. 1. Relative error on the first tenl =0 eigenstates of hydro-
gen using a Gauss-Laguerre basis with no scalingsh=1d. The points
indicate the results obtained using the method of this paper for
N=20 sPd, N=50 scd, and N=100 sjd. The lines represent the
relative error obtained using the regularized Lagrange mesh
method of Vincke et al.f9g for N=20 ssolidd, N=50 sdottedd, and
N=100 sdashedd.
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the integrand has terms that behave as inverse powers ofr.
Vincke, Malegat, and Baye[9] propose a simple procedure to
remedy the problem. They regularize the problem by multi-
plying the Schrödinger equation byrsrd, wherersrd is cho-
sen so thatrsrdvsrd=const asr =0. Using, for example,
rsrd=r2, leads to a generalized eigenvalue problem with a
modified kinetic energy matrix based on Laguerre polynomi-
als witha=0. Here we suggest a more direct attack. First, we
do not transform the Schrödinger equation. We use the La-
guerre polynomials witha=0, that is, with a weight function
exps−rd, but choose the points and weights of the quadrature
by the Gauss-Radau rule withr =0 as the fixed point. The set
of resulting DVR functions all satisfy the boundary condi-
tions at infinity and due to the Kroneckerd function property
(2b) all but the first DVR function also satisfy the boundary
condition at the origin, that is, they lead off asr. The first
basis function is then simply dropped from the expansion.
The resulting matrix elements of the Hamiltonian are all ex-
actly integrated by the quadrature rule and quite well be-
haved.

We have applied our method to the spectrum of the hy-
drogen atom. In Fig. 1 we show the relative error« on the
first ten eigenstates withl =0 for various basis set sizes. For
comparison we also plot the results obtained when using the
regularized mesh technique of Vinckeet al. (with scaling
factor h=1, see Ref. 9). In addition to its greater simplicity
the accuracy of our method is equal or superior to that of the
regularized mesh technique. Moreover, since all basis func-
tions vanish at the origin, our method works equally well for
finite values of the angular momentum, as long as the wave
function is well localized within the interval.

A second approach, which works for both the bound and
continuous spectrum, places the system in a large box of
radius, r =a. The DVR basis is defined using the Gauss-
Legendre-Lobatto quadrature rule. By ensuring that the two
end points are part of the quadrature, it becomes trivial to
satisfy the boundary conditions. Dropping the DVR function

at the origin guarantees that the solution will vanish atr =0.
If the DVR function at the last point is dropped, the solution
will go to zero atr =a and simulate exponentially decaying
solutions. By retaining the DVR function at the last point and
adding a Bloch operator

L =
"2

2M
Fdsx − ad

d

dx
G s7d

to the Hamiltonian, it is possible to deal with nonfixed node
boundary conditions at the right end point and simulate scat-
tering boundary conditions. For long range potentials, such
as the Coulomb potential, it is necessary to make sure that
the results are not box size dependent. Stated differently, one
must examine the convergence of the eigenvalues with re-
spect to basis set and box size. This is clearly evidenced in
Tables I–III where one sees convergence to eigenvalues of
the truncated Coulomb potential when the size of the box is
too small. By systematically increasing the box size and the
basis, it is possible to obtain the eigenvalues to arbitrary
accuracy.

IV. CONCLUSIONS

Previous researchers have developed DVR techniques that
require special treatment of singular potentials or nonpoly-
nomial based quadratures. Here we have demonstrated that a
judicious use of the orthogonal polynomial approach, using
the Gauss-Lobatto quadrature rule, avoids the need to trans-
form the Schrödinger equation into a form which is numeri-
cally less tractable. In addition, the method is applicable to
all types of boundary conditions and is able to treat the
bound and continuous spectra on equal footing. As a final
note, using the finite element DVR enables one to treat sin-
gularities or even discontinuities[7] at interior points, if they
are known in advance, by choosing the boundaries of the
elements at those points.
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